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Abstract

Self-training achieves enormous success
in various semi-supervised and weakly-
supervised learning tasks. The method can be
interpreted as a teacher-student framework,
where the teacher generates pseudo-labels,
and the student makes predictions. The two
models are updated alternatingly. However,
such a straightforward alternating update rule
leads to training instability. This is because a
small change in the teacher may result in a sig-
ni�cant change in the student. To address this
issue, we proposeDRIFT, short for differen-
tiable self-training, that treats teacher-student
as a Stackelberg game. In this game, a leader
is always in a more advantageous position
than a follower. In self-training, the student
contributes to the prediction performance, and
the teacher controls the training process by
generating pseudo-labels. Therefore, we treat
the student as the leader and the teacher as the
follower. The leader procures its advantage
by acknowledging the follower's strategy,
which involves differentiable pseudo-labels
and differentiable sample weights. Conse-
quently, the leader-follower interaction can be
effectively captured via Stackelberg gradient,
obtained by differentiating the follower's
strategy. Experimental results on semi- and
weakly-supervised classi�cation and named
entity recognition tasks show that our model
outperforms existing approaches by large
margins.

1 Introduction

Self-training is a classic method that was �rst pro-
posed for semi-supervised learning (Rosenberg
et al., 2005; Lee, 2013). It is also interpreted as a
regularization method (Mobahi et al., 2020), and
is extended to weakly-supervised learning and do-
main adaptation (Meng et al., 2018). The approach
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has gain popularity in many applications. For ex-
ample, in conjunction with pre-trained language
models (Devlin et al., 2019), self-training has
demonstrated superior performance on tasks such
as natural language understanding (Du et al., 2021),
named entity recognition (Liang et al., 2020), and
question answering (Sachan and Xing, 2018).

Conventional self-training can be interpreted as
a teacher-student framework. Within this frame-
work, a teacher model generates pseudo-labels for
the unlabeled data. Then, a student model updates
its parameters by minimizing the discrepancy be-
tween its predictions and the pseudo-labels. The
teacher subsequently re�nes its parameters based
on the updated version of the student using pre-
de�ned rules. Such rules include minimizing a loss
function (Pham et al., 2020), copying the student's
parameters (Rasmus et al., 2015), and integrating
models from previous iterations (Laine and Aila,
2017; Tarvainen and Valpola, 2017). The above
procedures are operated iteratively.

Computationally, the alternating update proce-
dure often causes training instability. Such insta-
bility comes from undesired interactions between
the teacher and the student. In practice, we often
use stochastic gradient descent to optimize the stu-
dent, and the noise of the stochastic gradient can
cause oscillation during training. This means in a
certain iteration, the student is optimized towards
a certain direction; while in the next iteration, it
may be optimized toward a drastically different di-
rection. Such a scenario renders the optimization
ill-conditioned. Moreover, the student model's gra-
dient is determined by the pseudo-labels generated
by the teacher. Because of the training instability,
a small change in the pseudo-labels may result in a
substantial change in the student.

To resolve this issue, we proposeDRIFT
(differentiable self-training), where we formulate
self-training as a Stackelberg game (Von Stackel-
berg, 2010). The concept arises from economics,
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where there are two players, called the leader and
the follower. In a Stackelberg game, the leader is
always in an advantageous position by acknowledg-
ing the follower's strategy. Within the self-training
framework, we grant the student a higher priority
than the teacher. This is because the teacher serves
the purpose of generating intermediate pseudo-
labels, such that the student can behave well on
the task. The student (i.e., the leader) procures its
advantage by considering what the response of the
teacher (i.e., the follower) will be, i.e., how will the
follower react after observing the leader's move.
Then, the leader makes its move, in anticipation
of the predicted response of the follower. We re-
mark that the Stackelberg game formulation has
also been used in other domains such as adversarial
training (Zuo et al., 2021).

We highlight that inDRIFT, the student has a
higher priority than the teacher. In contrast, in con-
ventional self-training, the two models are treated
equally and have the same priority. When using
conventional self-training, the student only reacts
to what the teacher has generated. In differentiable
self-training, the student recognizes the teacher's
strategy and reacts to what the teacher is antici-
pated to response. In this way, we can �nd a better
descent direction for the student, such that training
can be stabilized.

To facilitate the leader's advantage, our frame-
work treats the follower's strategy (i.e., pseudo-
labels generated by the teacher) as a function of the
leader's decision (i.e., the student's parameters). In
this way, differentiable self-training can be viewed
solely as a function of the student's parameters.
Therefore, the problem can be ef�ciently solved
using gradient descent.

Besides pseudo-labels, the teacher can also gen-
erate sample weights (Freund and Schapire, 1997;
Kumar et al., 2010; Malisiewicz et al., 2011). Sam-
ple reweighting associates low-con�dence sam-
ples with small weights, such that the in�uence
of noisy labels can be effectively reduced. Similar
to pseudo-labels, sample weights and the student
model are also updated iteratively. As such, we
can further equipDRIFT with differentiable sam-
ple weights. This can be achieved by integrating
the weights as a part of the follower's strategy. We
remark that our method is �exible and can incorpo-
rate even more designs to the follower's strategy.

We evaluate the performance of differentiable
self-training on a set of weakly- and semi-

supervised text classi�cation and named entity
recognition tasks. In some weakly-supervised
learning tasks, our proposed method achieves com-
petitive performance in comparison with fully-
supervised models. For example, we obtain a
97.3% vs. 96.2% classi�cation accuracy on Yelp,
and we do not use any labeled training data from
the Yelp dataset.

We highlight that our proposed differentiable
self-training approach is an ef�cient substitution
to existing self-training methods. Moreover, our
method does not introduce any additional tuning
parameter to the teacher-student framework. Addi-
tionally, DRIFT is �exible and can combine with
various neural architectures. We summarize our
contributions as the following: (1) We propose
a differentiable self-training frameworkDRIFT,
which employs a Stackelberg game formulation of
the teacher-student approach. (2) We employ dif-
ferentiable pseudo-labels and differentiable sample
weights as the follower's strategy. Our method al-
leviates the training instability issue. (3) Extensive
experiments on semi-supervised node classi�ca-
tion, semi- and weakly-supervised text classi�ca-
tion and named entity recognition tasks verify the
ef�cacy of DRIFT.

2 Background

� Self-training for semi-supervised learning.
Self-training is one of the earliest and simplest
approaches to semi-supervised learning (Rosen-
berg et al., 2005; Lee, 2013). The method uses a
teacher model to generate new labels, on which a
student model is �tted. Similar methods such as
self-knowledge distillation (Furlanello et al., 2018)
are proposed for supervised learning. The major
drawback of self-training is that it is vulnerable to
label noise. A popular approach to tackle this is
sample reweighting (Freund and Schapire, 1997;
Kumar et al., 2010; Malisiewicz et al., 2011), where
high-con�dence samples (Rosenberg et al., 2005;
Zhou et al., 2012) are assigned larger weights. Data
augmentation methods (Berthelot et al., 2019; Chen
et al., 2020) are also proposed to further enhance
self-training.

� Self-training for weakly-supervised learning.
Weak supervision sources, such as semantic rules
and knowledge bases, facilitate generating large
amounts of labeled data (Goh et al., 2018; Hoff-
mann et al., 2011). The weak supervision sources
have limited coverage, i.e., not all samples can



be matched by the rules, such that a consider-
able amount of samples are unlabeled. Moreover,
the generated weak labels usually contain exces-
sive noise. Recently, self-training techniques are
adopted to weakly-supervised learning. In con-
junction with pre-trained language models (Devlin
et al., 2019; Liu et al., 2019), the technique achieves
superior performance in various tasks (Meng et al.,
2018, 2020; Niu et al., 2020; Liang et al., 2020; Yu
et al., 2021).

3 Method

For both semi-supervised and weakly-supervised
learning problems, we have labeled samples
Xl = f (x i ; yi )g

N l
i =1 and unlabeled samplesXu =

f x j gNu
j =1 . HereN l is the number of labeled data,

andNu is the number of unlabeled data. Note that
in weakly-supervised learning, we have unlabeled
data because of the limited coverage of weak su-
pervision sources. The difference between semi-
and weakly-supervised learning is that in the for-
mer case, the labelsf yi g

N l
i =1 are assumed to be

accurate, whereas in the latter case, the labels are
noisy. The goal is to learn a classi�erf : X ! RC ,
whereX = Xl [ X u denotes all the data samples,
Y = f 1; � � � ; Cg is the label set, andC is the num-
ber of classes. The classi�erf outputs a point in
theC-dimensional probability simplex, where each
dimension denotes the probability that the input be-
longs to a speci�c class.

3.1 Differentiable Self-Training for
Semi-Supervised Learning

Self-training can be interpreted as a teacher-student
framework. Within this framework, the teacher
�rst generates pseudo-labelsey (see(6)) for the
data samples. Then, the student updates itself by
minimizing a loss function (see(8)), subject to the
generated pseudo-labels. Such two procedures are
run iteratively.

We remark that self-training behaves poorly
when encountering unreliable pseudo-labels, which
will cause the student model to be updated towards
the wrong direction. To alleviate this issue, we
�nd a good initialization� init for the models. In
semi-supervised learning,� init is found by �tting a
model on the labeled dataXl . Concretely, we solve

min
�

L sup(� ) =
1

N l

X

X l

`sup(f (x i ; � ); yi ) : (1)

Here(x i ; yi ) 2 X l , and`sup(�; �) is the supervised

Algorithm 1: Differentiable Self-Training.
Input: Xl : labeled dataset;Xu : unlabeled

dataset;� : parameter of exponential
moving average;� init : initialization;
Optimizer: optimizer to update� S.

Initialize: � T
0 = � S

0 = � init ;
for t = 1 ; � � � ; T � 1 do

Sample a labeled minibatch
Bl = f x i g

jB l j
i =1 from Xl ;

Sample an unlabeled minibatch
Bu = f x i g

jBu j
i =1 from Xu ;

ey (� T
t (� S

t ))  (6) onBu ;
! (� T

t (� S
t ))  (7) onBu ;

L (� S
t )  (8) onBu [ B l ;

g = d L (� S
t )=d� S

t  (4);
� S

t+1 = Optimizer(� S
t ; g);

� T
t+1 = �� T

t + (1 � � )� S
t+1 ;

end
Output: Student model� S

T for prediction.

loss, e.g., the cross-entropy loss.(1) can be ef-
�ciently optimized using stochastic gradient-type
algorithms, such as Adam (Kingma and Ba, 2015).

At time t, denote the student's parameters� S
t ,

and the teacher's parameters� T
t (� S

t ). We set both
the student's and the teacher's initial parameters
to � init , i.e., � S

0 = � T
0 (� S

0 ) = � init . Note that the
teacher model depends on the student. We adopt an
exponential moving average (Laine and Aila, 2017;
Tarvainen and Valpola, 2017) approach to model
such a dependency:

� T
t (� S

t ) = �� T
t � 1 + (1 � � )� S

t : (2)

Recall that in our differentiable self-training
framework, the student acknowledges the teacher's
strategy. This meets the de�nition of a Stackelberg
game (Von Stackelberg, 2010), and we propose the
following formulation:

min
� S

t

L (� S
t ) = L sup(� S

t ) (3)

+
1

Nu

X

x i 2X u

`S
�
x i ; F (� T

t (� S
t )) ; � S

t

�
;

s.t. F
�
� T

t (� S
t )

�
=

�
ey (� T

t (� S
t )) ; ! (� T

t (� S
t ))

�
:

Here recall thatXu is the unlabeled data samples,
andNu is the size ofXu . In (3), F (� T

t (� S
t )) is

the teacher's strategy, which contains differentiable
pseudo-labels (i.e.,ey (� T

t ) in (6)) and differentiable
sample weights (i.e.,! (� T

t ) in (7)). The loss func-
tion `S is de�ned in(8). Note that we still include



the supervised lossL sup in (1) in the objective func-
tion L . Following conventions, in(3), the mini-
mization problem solves for the leader, and we call
F (� T

t ) the follower's strategy. Note that the Stack-
elberg game formulation(3) has also been adopted
in adversarial training (Zuo et al., 2021).

The Stackelberg game formulation is fundamen-
tally different from conventional self-training ap-
proaches, where the teacher� T is not treated as a
function of the student� S. In our differentiable self-
training framework, the leader takes the follower's
strategy into account by consideringF (� T

t (� S
t )) .

In this way, self-training can be viewed solely in
terms of the leader's parameters� S

t .
Consequently, the leader problem can be ef�-

ciently solved using stochastic gradient-type algo-
rithms, where the gradient is

dL (� S
t )

d� S
t

=
1

N l

X

(x i ;yi )2X l

d`sup(� S
t )

d� S
t

(4)

+
1

Nu

X

x i 2X u

d`S
�
x i ; F (� T

t (� S
t )) ; � S

t

�

d� S
t

=
1

N l

X

X l

d`sup(� S
t )

d� S
t

+
1

Nu

X

Xu

@S̀
�
x i ; F; � S

t

�

@�St
| {z }

leader

+
1

Nu

X

x i 2X u

@S̀
�
x i ; F (� T

t (� S
t )) ; � S

t

�

@�Tt (� S
t )

d� T
t (� S

t )
d� S

t
| {z }

leader-follower interaction

:

In (4)1, we haved� T
t (� S

t )=d� S
t = 1 � � be-

cause of(2). Note that a conventional self-training
method only considers the “leader” term, and ig-
nores “leader-follower interaction”. This causes
training instabilities, which we demonstrate empir-
ically in Fig. 1 and Fig.2.

The proposed differential self-training algorithm
is summarized in Algorithm1. In the next two
sections, we spell out the two components of the
follower's strategy, namely differentiable pseudo-
labels and differentiable sample weights.

We remark that Algorithm1 adopts a Stackel-
berg game formulation of self-training. That is, the
loss terms in(3) (soft-labels and sample weights)
are well-established techniques, and the proposed
method is a novel optimization algorithm.

1The “leader” term is written as@S̀ (x i ; F; � S
t )=@�St in-

stead of@S̀ (x i ; F (� T
t (� S

t )) ; � S
t )=@�St because the partial

derivative is only taken with respect to the third argument
in `S (x i ; F; � S

t ). We drop the� T
t (� S

t ) term inF (� T
t (� S

t )) to
avoid causing confusion.

3.2 Differentiable Pseudo-Labels

In a self-training framework, the teacher model
labels the unlabeled data. Concretely, at timet, for
each samplex 2 X u in the unlabeled dataset, a
hard pseudo-label (Lee, 2013) is de�ned as

eyhard = argmax
j 2Y

�
f (x; � T

t )
�

j : (5)

Heref (x; � T
t ) 2 RC is in the probability simplex,

and[f (x; � T
t )] j denotes itsj -th entry.

There are two problems with the hard pseudo-
labels. First, differentiable self-training requires
every component of the follower's strategy(3) to
be differentiable with respect to the leader's param-
eters. However,(5) introduces a non-differentiable
argmax operation. Second, the hard pseudo-labels
exacerbates error accumulation. This is because
eyhard only contains information about the most
likely class, such that statistics regarding the pre-
diction con�dencef (x; � T

t ) is lost. For example,
suppose in a two-class classi�cation problem, we
obtainf (x; � T

t ) = [0 :51; 0:49] for somex. This
prediction result indicates that the model is uncer-
tain to which classx belongs. However, under the
hard pseudo-labeleyhard = 0 , the student model
becomes unaware of such uncertainty.

To resolve the above two issues, we propose to
employ soft pseudo-labels (Xie et al., 2016, 2020;
Meng et al., 2020). Concretely, for a data sample
x 2 B in a batchB, thej -th entry of its soft pseudo-
labeley (� T

t ) 2 RC is de�ned as

�
ey (� T

t )
�

j =

�
f (x; � T

t (� S
t ))

� 1=� =f j
P

j 02Y

�
f (x; � T

t (� S
t ))

� 1=� =f j 0

; (6)

wheref j =
P

x02B [f (x0; � T
t (� S

t ))]1=� , and� is a
temperature parameter that controls the “softness”
of the soft pseudo-label. Note that when the tem-
perature is low, i.e.,� ! 0, the soft pseudo-label
becomes sharper and eventually converges to the
hard pseudo-label (5).

In (6), the soft pseudo-labeley (� T
t ) is a function

of the teacher's parameters� T
t , which in turn is a

function of the student's parameters� S
t (2). There-

fore, ey is differentiable with respect to� S
t , and �ts

in the differentiable self-training framework. The
gradient ofey with respect to� S can be ef�ciently
computed by a single back-propagation using deep
learning libraries.

Notice that(6) emphasizes the tendency ofx
belonging to a speci�c class, instead of to which





Dataset AGNews IMDB Yelp MIT-R CoNLL-03 Webpage BC5CDR Wikigold

RoBERTa-Full 91.41 94.26 97.27 88.51 90.11 (89.14/91.10)72.39 (66.29/79.73)85.15 (83.74/86.61)86.43 (85.33/87.56)

RoBERTa-Weak 82.25 72.60 79.91 70.95 75.61 (83.76/68.90) 59.11 (60.14/58.11)78.51 (74.96/82.42)51.55 (49.17/54.50)
WeSTClass 82.78 77.40 76.86 --- --- --- --- ---
Self-training 86.07 85.72 89.95 73.59 77.28 (83.42/71.98)56.90 (54.32/59.74)79.92 (74.73/85.90) 56.90 (54.32/59.74)
UAST 86.28 84.56 90.53 74.41 77.92 (83.30/73.20)58.18 (56.33/60.14)81.50 (80.09/82.98)57.79 (52.64/64.05)
BOND 86.19 88.36 93.18 75.90 81.48 (82.05/80.92)65.74 (67.37/64.19) 81.53 (79.54/83.63)60.07 (53.44/68.58)

DRIFT 87.80 91.56 96.24 77.15 81.74(81.45/82.02) 66.04(65.23/66.87) 82.62(82.57/82.68) 60.66(57.50/64.21)

Table 1: Accuracy (in %) of weakly-supervised text classi�cation on various datasets. We report the mean over
three runs.DRIFT is initialized from RoBERTa-Weak. For text classi�cation tasks, we report the accuracy; and
for NER tasks, we reportF1 (precision/recall). The best results are shown in bold, exceptRoBERTa-Full, which is
a fully-supervised model and is included here as a reference.

methods is thatDRIFT adopts the differentiable
strategies, while Self-training does not. In both
methods, the teacher/student model is a two-layer
feed-forward neural network, with hidden dimen-
sion50andtanh (hyperbolic tangent) as the non-
linearity. We �rst train the models for50 epochs
using the labeled samples. We then conduct self-
training with learning rate 0.01 and Adam (Kingma
and Ba, 2015) as the optimizer. We adopt an expo-
nential moving average approach(2) with � = 0 :5,
and we set the temperature parameter� = 0 :5 for
the soft pseudo-labels (6).

We conduct10 trails, and Fig.1 shows the ac-
curacy and the variance during training. We can
see that Self-training yields a much larger variance,
indicating an unstable training process. Note that
the performance gain ofDRIFT to Self-training has
passed a paired-student t-test with p-value< 0:05.

Moreover, by examining the experimental re-
sults, we �nd that Self-training at times gets stuck
at subpotimal solutions. As an example, in Fig.2,
notice that the two methods behave equally well at
epoch 20. However, Self-training gets stuck and
does not improve at epoch 150. This is because the
teacher generates hazardous labels that avert the
student from improving. Meanwhile, by incorpo-
rating differentiable strategies, the performance of
DRIFT improves at epoch 150 from epoch 20.

4.2 Weakly-Supervised Text Classi�cation

We �ne-tune a pre-trained RoBERTa model for
weakly-supervised learning. In addition, we
demonstrate that our method works well when
trained-from-scratch and when using different
backbones than the Transformer (Vaswani et al.,
2017). See Section4.3and Table3 for details.

Settings. We use the following datasets: Topic
Classi�cation on AGNews (Zhang et al., 2015);
Sentiment Analysis on IMDB (Maas et al., 2011)

and Yelp (Meng et al., 2018); Slot Filling on MIT-
R (Liu et al., 2013); and Named Entity Recognition
(NER) on CoNLL-03 (Tjong Kim Sang, 2002),
Webpage (Ratinov and Roth, 2009), Wikigold (Bal-
asuriya et al., 2009), and BC5CDR (Li et al., 2016).
The dataset statistics are summarized in Table7.
For each dataset, we generate weak labels using
some pre-de�ned rules, after which the same data
and generated weak labels are used by all the meth-
ods. More details about the weak supervision
sources are in AppendixC.

We adopt several baselines:

• RoBERTa (Liu et al., 2019) uses the
RoBERTa-base model with task-speci�c clas-
si�cation heads.

• Self-training (Lee, 2013; Rosenberg et al.,
2005) uses the conventional teacher-student
framework, where a teacher generates pseudo-
labels, and a student makes predictions.

• WeSTClass(Meng et al., 2018) leverages
generated pseudo-documents and uses self-
training to bootstrap over all the samples.

• BOND (Liang et al., 2020) uses a teacher-
student framework for self-training. The
teacher model is periodically updated to gen-
erate pseudo-labels when training the student.

• UAST(Mukherjee and Awadallah, 2020) esti-
mates uncertainties of unlabeled data via MC-
dropout (Gal and Ghahramani, 2016) during
self-training, and then selects samples with
low uncertainties. It is the state-of-the-art self-
training method for text data with few labels.

Recall that for weakly-supervised learning, we
�rst �ne-tune a RoBERTa model using the weakly-
labeled data, and then we discard the weak labels
and continue with self-training. This is an effective



strategy to reduce over�tting on label noise (Yu
et al., 2021). We follow this procedure for both
DRIFT and all the baseline methods.

Results. Experimental results are summarized
in Table1. We can see thatDRIFT achieves the
best performance in all the tasks. Notice that the
baselines that adopt self-training, e.g., WestClass,
Self-training, UAST, and BOND, outperform the
vanilla RoBERTa-Weak method. This is because in
weakly-supervised learning, a noticeable amount
of labels are inaccurate. Therefore, without noise
suppressing approaches such as self-training, mod-
els cannot behave well. However, without taking
the teacher's strategy into account, these methods
still suffer from training instabilities, such that they
are not as effective asDRIFT.

We highlight that on some datasets, performance
of our method is close to the fully-supervised
model RoBERTa-Full, even though we do not use
any clean labels. For example,DRIFT achieves
91.6% vs. 94.3% performance on IMDB, 96.2%
vs. 97.3% on Yelp, and 82.6 vs. 85.1 on BC5CDR.

4.3 Semi-Supervised Text Classi�cation

Datasets. We adopt AGNews, IMDB, and Ama-
zon (McAuley and Leskovec, 2013) (see Table7)
in this set of experiments. For each dataset, we
randomly sampleN 2 f 30; 50; 200; 1000g data
points from each class and annotate them with
clean labels, while the other data are treated as
unlabeled. Note that for all the splits of a particular
dataset, we use the same development and test sets.

Settings. Our differentiable self-training frame-
work works well in both �ne-tuning and training-
from-scratch regimes. Moreover, our approach is
�exible to accommodate different neural architec-
tures. We conduct two sets of experiments. In
the �rst set, we �ne-tune a pre-trained RoBERTa
model, which uses the Transformer (Vaswani et al.,
2017) as its backbone. In the second set of exper-
iments, we train a TextCNN (Kim, 2014) model
from scratch, which employs a convolutional neu-
ral network as the foundation.

Baselines. Besides RoBERTa, Self-training, and
UAST, which are used in weakly-supervised clas-
si�cation tasks, we adopt several new methods as
baseline approaches.

• VAMPIRE(Gururangan et al., 2019) pre-trains
a unigram document model on unlabeled data

using a variational auto-encoder, and then uses
its internal states as features for downstream
applications.

• UDA (Xie et al., 2020) uses back translation
and word replacement to augment unlabeled
data, and forces the model to make consistent
predictions on the augmented data to improve
model performance.

• MixText(Chen et al., 2020) augments the train-
ing data by interpolation in the hidden space,
and it exploits entropy and consistency reg-
ularization to further utilize unlabeled data
during training.

Results. Experimental results are summarized
in Table2. We can see thatDRIFT achieves the
best performance across the three datasets under
different setups. Notice that the performance of
VAMPIRE is not satisfactory. This is because it
does not use pre-trained models, unlike the other
baselines. Pre-trained language models contain
rich semantic knowledge, which can be effectively
transferred to the target task and boost model per-
formance. All the baselines do not explicitly con-
sider the teacher's strategy, and thus, they suffer
from training instabilities.

We remark that UDA, UAST and MixText lever-
age external sources or data augmentation methods
to make full use of the unlabeled data. These meth-
ods can potentially combine withDRIFT, which is
of separate interests.

Fine-tuning vs. Training-from-scratch. Table3
shows the results of training a TextCNN model
from scratch. We can see that the model trained
from scratch performs worse than �ne-tuning a pre-
trained model (Table2). This is because TextCNN
has signi�cantly less parameters than RoBERTa,
and is not pre-trained on massive text corpora.
Therefore, we cannot take advantage of the seman-
tic information from pre-trained models.

Nevertheless, under both weakly-supervised and
semi-supervised learning settings,DRIFT consis-
tently outperforms the baseline methods. This indi-
cates that our method is architecture independent,
and does not rely on transferring existing semantic
information. As such, differentiable self-training
serves as an effective plug-in module for existing
models. We remark thatDRIFT does not introduce
any additional tuning parameter in comparison with
conventional self-training.







Ethical Statement

This paper proposes Differentiable Self-Training
(DRIFT), a self-training framework for NLP tasks.
We demonstrate that the DRIFT framework can
be used for text classi�cation and named entity
recognition tasks. Moreover, the framework is also
demonstrated to be effective for semi-supervised
classi�cation on graphs. We use publicly available
datasets to conduct all the experiments. And the
proposed method is built using public code bases.
We do not �nd any ethical concerns.
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A Semi-Supervised Learning on Graphs

Datasets. We adopt three citation networks: Cora,
Citeseer, and Pubmed (Sen et al., 2008) as bench-
mark datasets. Their statistics are summarized in
Table6. Similar to semi-supervised text classi�-
cation tasks, for each dataset, we randomly sam-
ple N 2 f 10; 20; 50; 100g data points from each
class and annotate them with clean labels, while
the other data are treated as unlabeled. We use the
same development and test sets for all the splits of
a particular dataset.

Baselines. In addition to Self-training, we adopt
four graph neural network methods as baselines.
Note that Self-training uses GCN as its backbone.

� GCN (Kipf and Welling, 2017) adopts graph con-
volutions as an information propagation operator
on graphs. The operator smooths label information
over the graph, such that labeled nodes acknowl-
edge features of unlabeled ones, and predictions
are drawn accordingly.

� GraphVAT(Feng et al., 2019) leverages virtual
adversarial training on graphs. The method gener-
ates perturbations to each data point, and promotes
smooth predictions subject to the perturbations.

� GraphMix(Verma et al., 2019) is an interpolation-
based regularization method. It uses a manifold
mixup approach to learning more discriminative
node representations.

� GRAND(Feng et al., 2020) performs data aug-
mentation via a random propagation strategy. It
also leverages a consistency regularization to en-
courage prediction consistency across different aug-
mentations. GRAND uses a multi layer perception
(MLP) as its backbone.

Settings. To demonstrate that differentiable self-
training can be effectively combined with differ-
ent models, we adoptDRIFT to two architectures:
GCN, which is a graph convolution-based method;
and GRAND, which is a MLP-based method that
achieves state-of-the-art performance.

Results. Experimental results are summarized
in Table5. Notice that Self-training outperforms
GCN. This is because while GCN only implic-
itly uses information of the unlabeled nodes, Self-
training directly utilizes such information via the
pseudo-labels. Furthermore,DRIFT+GCN en-
hances the performance of Self-training. The other
baselines (e.g., GraphVAT, Graphmix, GRAND),

which are re�nements and substitutions to the
graph convolution operation, outperforms vanilla
GCN. By equipping GRAND with differentiable
self-training,DRIFT+GRAND achieves the best
performance in 10 out of 12 experiments. The per-
formance gain is more pronounced when there are
only a few labeled samples, e.g.,DRIFT+GRAND
improves GRAND by more than 11% when there
are 10 labeled samples per class.

Visualization of learned representations. Fig-
ure5 visualizes the learned representations of Self-
training andDRIFT. From Fig.5a, we can see that
Self-training mixes the representations of the red
class and the blue class, as indicated in the red
box. Such erroneous classi�cation is alleviated by
DRIFT (Fig. 5b). On Citeseer, notice that Self-
training generates a meaningless cluster (Fig.5c),
which is a sign that Self-training over�ts on the
label noise.

(a) Self-training on Cora. (b) DRIFT on Cora.

(c) Self-training on Citeseer. (d) DRIFT on Citeseer.

Figure 5: t-SNE plots of Self-training andDRIFT on
Cora and Citeseer. Each color denotes a different class.

B Classi�cation and Named Entity
Recognition Datasets

Dataset statistics for the classi�cation and named
entity recognition tasks are presented in Table7.

C Weak Supervision Sources

There are two types of semantic rules that we apply
as weak supervisions:

• Keyword Rule: HAS(x, L) ! C. If x
matches one of the words in the listL , we
label it asC.



Dataset Cora Citeseer Pubmed
Labels per class 10 20 50 100 10 20 50 100 10 20 50 100

Baselines
GCN (Kipf and Welling, 2017) 74.5 77.4 81.6 85.1 67.1 69.5 71.9 74.9 71.0 75.1 81.8 84.8
Self-training (Lee, 2013) 74.4 79.1 83.5 85.1 70.5 73.1 75.1 76.2 71.8 75.2 82.5 84.6
GraphVAT (Feng et al., 2019) 75.2 78.6 83.1 85.3 67.6 70.5 72.6 75.8 71.8 75.5 82.1 85.0
GraphMix (Verma et al., 2019) 77.3 82.3 84.8 86.0 67.1 73.9 74.5 76.9 72.9 76.1 81.9 84.4
GRAND (Feng et al., 2020) 76.5 84.3 86.5 87.2 62.8 73.3 75.0 77.8 77.4 78.5 83.9 86.2

Ours
DRIFT+GCN 80.4 81.8 84.6 85.6 74.4 75.4 75.9 77.4 72.8 78.1 83.3 85.3
DRIFT+GRAND 82.1 85.4 87.3 87.9 74.1 76.0 75.7 78.5 79.2 79.3 85.2 86.8

Table 5: Accuracy (in %) of semi-supervised node classi�cation on graphs. For all the splits of a particular dataset,
we use the same development and test sets. We report the mean over ten runs. The best results are shown in bold.

Dataset #Nodes #Edges #Class #Dev #Test #Features

Cora 2,708 5,429 7 500 1,000 1,433
Citeseer 3,327 4,732 6 500 1,000 3,703
Pubmed 19,717 44,338 3 500 1,000 500

Table 6: Statistics of datasets used in semi-supervised learning on graphs.

Dataset Task #Class #Train #Dev #Test

AGNews Topic 4 108k 12k 7.6k
IMDB Sentiment 2 20k 2.5k 2.5k
Yelp Sentiment 2 30.4k 3.8k 3.8k
Amazon Sentiment 2 25k 2.5k 2.5k
MIT-R Slot Filling 9 6.6k 1.0k 1.5k
CoNLL-03 NER 4 14.0k 3.2k 3.4k
Webpage NER 4 385 99 135
Wikigold NER 4 1.1k 280 274
BC5CDR NER 2 4.5k 4.5k 4.7k

Table 7: Statistics of datasets used in text classi�cation and named entity recognition tasks.

• Pattern Rule: MATCH(x, R) ! C. If x
matches the regular expressionR, we label
it asC.

Two examples of semantic rules on AGNews and
IMDB are given in Table8 and Table9.

All of the weak supervisions, i.e., linguistic rules,
are from existing literature. The details are listed
below:

• AGNews, IMDB, Yelp: We use the rules inRen
et al.(2020).

• MIT-R: We use the rules inAwasthi et al.
(2020).

• CoNLL-03, WebPage, Wikigold: We use the
keywords inLiang et al.(2020).

• BC5CDR: We use the keywords inShang et al.
(2018). Note that for simplicity, we do not
use AutoPhrase to extract external keywords.
Such an approach requires external corpus and
extra parameter-tuning.

D Training Details

We use a validation set to tuneDRIFT as well as
all the baseline methods. We report the test result
of the best model on the validation set. All the
experimental results have passed a paired t-test
with p < 0:05.

D.1 Baseline Settings

We implement the GraphVAT method by ourselves.
For the other baselines, we follow the of�cial
release:



Rule

[war, prime minister, president, commander, minister, military, militant,
kill, operator] ! POLITICS
[baseball, basketball, soccer, football, boxing, swimming, world cup,
nba,olympics,final, fifa] ! SPORTS
[delta, cola, toyota, costco, gucci, citibank, airlines] ! BUSINESS
[technology, engineering, science, research, cpu, windows, unix, system,
computing, compute] ! TECHNOLOGY

Table 8: Examples of semantic rules on AGNews.

Rule

[masterpiece, outstanding, perfect, great, good, nice, best, excellent,
worthy, awesome, enjoy, positive, pleasant, wonderful, amazing, superb,
fantastic, marvellous, fabulous] ! POS
[bad, worst, horrible, awful, terrible, crap, shit, garbage, rubbish,
waste] ! NEG
[beautiful, handsome, talented] ! POS

[fast forward, n t finish] ! NEG
[well written, absorbing,attractive, innovative, instructive,interesting,
touching, moving] ! POS
[to sleep, fell asleep, boring, dull, plain] ! NEG
[ than this, than the film, than the movie] ! NEG
MATCH(x, * PRE* EXP* ) ! POS PRE= [will , ll , would , can't wait to ] EXP = [ next time, again,
rewatch, anymore, rewind]
PRE= [highly , do , would , de�nitely , certainly , strongly , i , we ]EXP= [ recommend, nominate]
PRE= [high , timeless , priceless , has , great , of , real , instructive ]EXP= [ value, quality, meaning, signi�cance]

Table 9: Examples of semantic rules on IMDB.

(1) MixText: https://github.com/
GT-SALT/MixText/ ;
(2) BOND: https://github.com/
cliang1453/BOND ;
(3) UAST: https://github.com/
microsoft/UST ;
(4) WeSTClass: https://github.com/
yumeng5/WeSTClass ;
(5) GCN: https://github.com/tkipf/
pygcn ;
(6) GRAND: https://github.com/
THUDM/GRAND;
(7) GraphMix: https://github.com/
vikasverma1077/GraphMix .

D.2 Weakly-Supervised Text Classi�cation

Hyper-parameters are shown in Table10.

D.3 Semi-Supervised Text Classi�cation

We implement TextCNN with Pytorch (Paszke
et al., 2019). We use the pre-trained 300 dimension
FastText embeddings3 as the input vectors. Then,
we set the �lter window sizes to 2, 3, 4, 5 with 500

3We use the 1 million word vectors trained on Wikipedia
2017, UMBC webbase corpus and news dataset, which is
available online: https://fasttext.cc/docs/en/
english-vectors.html .

feature maps each. We train the model for 100 it-
erations as initialization, and setT = 1000 during
self-training. We use Stochastic Gradient Descent
(SGD) with momentumm = 0 :9 and we set the
learning rate to5 � 10� 4. We set the dropout rate
to 0.5 for the linear layers after the CNN. We tune
the weight decay in

�
10� 4; 10� 5; 10� 6; 10� 7

�
.

Hyper-parameters are shown in Table11.

D.4 Semi-Supervised Learning on Graphs

Our method serves as an ef�cient drop-in module
to existing methods. There are only two parameters
that we tune in the experiments: the exponential
moving average rate� and the temperature� of the
soft pseudo-labels. For all the three datasets, we
set� = 0 :99. For the temperature parameter, we
use the following settings.

• Cora:1=� = 3 :0 for GRAND and1=� = 4 :0
for GCN.

• Citeseer:1=� = 3 :0 for GRAND and1=� =
3:5 for GCN.

• Pubmed:1=� = 3 :0 for GRAND and1=� =
4:0 for GCN.



Hyper-parameter AGNews IMDB Yelp MIT-R CoNLL-03 Webpage Wikigold BC5CDR

Dropout Ratio 0.1
Maximum Tokens 128 256 512 64 128 128 128 128

Batch Size 32 16 16 64 32 32 32 32
Weight Decay 10� 4

Learning Rate 10� 5

Initialization Steps 160 160 200 150 900 300 3500 1500
T 3000 2500 2500 1000 1800 200 700 1000
� 0.95 0.9 0.95 0.9 0.9 0.95 0.9 0.9
� 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 10: Hyper-parameter con�gurations for weakly-supervised text classi�cation.

Hyper-parameter AGNews IMDB Amazon

Dropout Ratio 0.1
Maximum Tokens 128 256 256

Batch Size 32 16 16
Weight Decay 10� 4

Learning Rate 10� 5

Initialization Steps 1200 1000 800
T 4000 3000 4000
� 0.95 0.99 0.9
� 0.6 0.5 0.5

Table 11: Hyper-parameter con�gurations for semi-supervised text classi�cation.

Other hyper-parameters and tricks used in training
follow the corresponding works.


